Test 1 Topics - Select Topics from Chapter 1-5

Highlighted topics are optional since they are not vital to the understanding of the concepts being discussed.

- Scientific notation
- Significant figures
- Matter
- Pure substances
- Mixtures
- Homogeneous vs heterogeneous mixtures
- Compounds
- Elements
- Physical properties of matter
- Chemical properties of matter
- States of matter
- Physical changes vs. chemical changes
- Conservation of mass
- Democritus
- Dalton and his atomic theory
- Law of Definite Proportions/Multiple proportions
- Cathode ray tubes and J. J. Thompson’s experiment
- Millikan’s oil drop experiment
- Rutherford’s gold foil experiment
- Alpha particles
- Proton, neutron, electron, nucleus
- Attraction and repulsion of charged particles
- Atomic number
- Mass number
- Number of protons, neutrons, and electrons
- Isotopes and their natural abundance
- Atomic mass unit (amu)
- Atomic mass
- Wave nature of light
- Electromagnetic spectrum
- Wavelength, frequency, and the speed of light \(c = \lambda \nu \)
- Particle nature of light
- Quantum or quanta
- Photon
- Planck’s constant and \(E = h \nu \)
- The Photoelectric Effect
- Atomic emission spectra solar energy/chromophores/photosynthesis
- Bohr Model of the Atom
- Energy states, ground state, excited state
- The energy diagram describing the energy of an electron in the ground state, after it is excited, and after it emits light to fall back to the ground state. \(\Delta E = h \nu \)
- Louis de Broglie’s wave equation \(\lambda = h / (mv) \) describes how all moving particles have wave characteristics
- The Heisenberg Uncertainty Principle *just mention
- The Schrodinger wave equation *just mention
- Atomic orbital
- Principal quantum number \((n = 1, 2, 3, \ldots) \)
- Energy sublevels \((s, p, d^\ast, f^\ast)\) *Note- you do not have to know the shapes of the starred orbitals
Test 2 Topics - Parts of Chapter 5, 6, 8, 9

- Electron configuration
- Orbital Diagrams
- Aufbau principle
- The Pauli Exclusion Principle
- Hund's Rule
- Valence electrons
- Noble gas configurations
- History of the Periodic Table (minimal questions)
 - Newlands and the “Law of Octaves”
 - Mendeleev and Meyer
 - Ordered by atomic mass and left black spaces that predicted where elements should be before they were discovered.
 - Moseley
 - Re-ordered the table to go by atomic number
- Periodic Table
 - S, p, d, f block
 - Metals, nonmetals, metalloids
 - Alkali metals, alkaline earth metals, halogens, noble gases, transition metals, inner transition metals.
- Periodic Trends
 - Ionization Energy
 - Atomic Radius
 - Ionic Radius
 - Electronegativity
- You must be able to explain why the periodic trends exist:
 - Force of Attraction between valence electrons and the nucleus affected by:
 - Effective nuclear charge which is determined by:
 - Number of shielding electrons
 - Number of protons and electrons in the valence shell
 - Distance of valence electrons from nucleus
- Lewis dot structures of
 - Neutral atoms
 - Ions
 - Ionic compounds
 - Covalent compounds
 - Line structures of covalent compounds as well.
- Ion formation reactions
 - Ionic compound formation reactions
 - Balanced in atoms and charge
- Ionic Bonding characteristics
- Lattice Energy
- Metallic Bonding
- Alloys
- Polyatomic ions
- Binary ionic compounds
- Cations and anions
- Oxidation state/number
- Transition metals have more than one oxidation state
- Naming
 - Ionic compounds
 - Covalent compounds
 - Polyatomic ions
• Must be able to write the formula OR name depending on what is given

• Potential energy
 • Why do bonds form?
 • Bond length

• Exceptions to the Octet rule
 • Be able to recognize that a molecule is an exception
 • Odd number of electrons leading to a free radical
 • Fewer than 8 electrons around an atom
 • Expanded octet

Test 3 Topics - Chapter 9, 13.2, 22, 23

• VSEPR
• Electron domain geometries
• Molecular Geometries chirality/biology structure-function (enzymes, proteins)
• Hybridization
• Pi bonds, sigma bonds
• Resonance Structures
• Polarity
• Intermolecular Forces of Attraction
 • Hydrogen bonding
 • Dipole-Dipole interactions
 • London Dispersion Forces

• Organic Chemistry
 • Representations of organic molecules
 • Hydrocarbons (alkanes, alkenes, alkynes, cyclic hydrocarbons)
 • Properties
 • Naming
 • Functional Groups
 • Alkenes, alkynes
 • Alcohols
 • Carboxylic acids
 • Ethers
 • Esters
 • Ketones
 • Amines
 • Benzene/aromatic groups
 • Reactions
 • Combustion reaction- (oxidation reactions)
 • Incomplete Combustion Reaction
 • Addition reactions
 • Substitution reactions
 • Condensation reactions
 • Elimination Reactions
 • Isomers
 • Structural isomers
 • Chirality and optical isomers

Unit 4 Topics - Chapter 10, 11, 12

• Chemical Reactions
• Reactants, products
• Balancing reactions
Naming reactants/products
• Synthesis reactions
• Combustion reactions
• Decomposition reactions
• Single replacement reactions
• Activity Series
• Double replacement reactions
• Reading solubility rules charts
• Precipitates
• Complete ionic equations
• Spectator ions
• Net ionic equations
• The Mole
• Avogadro’s Number
• Conversion Factors (m, mm, mL, m, etc.)
• Molar Mass of atoms and compounds
• Empirical formula
• Molecular formula
• Ionic compounds/covalent compounds/isomers
• Percent Composition
• Percent by mass
• Hydrates
• Stoichiometry (food chemistry/ozone & freon)
• Mole ratio
• Limiting reactants
• Excess reactants

Test 5 Topics - Chapter 16, 13

• Types of energy-Kinetic Energy, Chemical potential Energy, Gravitational potential energy
• Units of energy (Calorie, calorie, Joules)
• Temperature- relationship between temperature and kinetic energy, \(KE = \frac{3}{2}kT \)
• Units of temperature (celsius, kelvin)
• Thermodynamics
• Zeroth Law of Thermodynamics
• First Law of Thermodynamics
• Interconversion of different types of energy
• Heat
• Specific heat
• \(q = mc\Delta T \)
• calorimetry
• exothermic
• endothermic
• enthalpy- heat of reaction
• thermochemical equations and stoichiometry
• changes in states of matter
• plot of temperature vs. heat and changes in state
• heat of fusion
• heat of solidification
• heat of condensation
• heat of vaporization
• writing thermochemical equations for phase changes
• Hess’s Law
• Formation reactions
• Standard enthalpy of formation
• Spontaneous vs. nonspontaneous processes
• Entropy (DNA)
• Predicting entropy changes
• Enthalpy
• Law of disorder
• Predicting changes in entropy
• Gibbs free energy (ATP)

Test 6 Topics - Chapter 13, 14

• Kinetic Molecular Theory
• Average Kinetic Energy, plot of average kinetic energy distribution
• Pressure
• Volume
• Diffusion
• Effusion
• Barometer
• Manometer
• Graham’s Law- Dalton’s Law of Partial Pressure
• Boyle’s Law
• Charles’s Law
• Gay-Lussac’s Law
• Combined Gas Law
• Avogadro’s Principle
• Molar volume
• Ideal Gas Law
• Ideal gases versus real gases
• Gas Stoichiometry
• Solids, liquids, and gases
 • Density
 • Compression
 • Fluidity
• Viscosity
• Surface tension
• Capillary action
• Crystalline solids
 • Molecular solids
 • Covalent network solids
 • Ionic solids
 • Metallic solids
• Amorphous solids
• Phase Changes and energy of phases and phase changes
• Melting
• Vaporization
• Vapor Pressure
• Sublimation
• Condensation
• Deposition
• Freezing
• Phase Diagrams (Triple point video)

Test 7 Topics - Chapter 15, 17, 18

• Solutions (chemical toxicity)
• Soluble
- Insoluble
- Miscible
- Immiscible
- Solvation (dissolving) of ionic compounds
- Solvation (dissolving) of molecular compounds
- Factors that affect rate of solvation
- Solubility
- Saturated solution
- Unsaturated solution
- Supersaturated solution
- Factors that affect solubility
- Solubility of Gases
- Concentrations
 - Percent by mass
 - Percent by volume
 - Molarity
 - Molality
 - Mole Fraction
- How to make a solution
- Dilutions
- Colligative Properties
- Vapor Pressure Lowering
- Boiling Point Elevation
- Freezing Point Depression
- Reaction Rates
- Collision Theory
- Factors that affect reaction rate and how they affect reaction rate
 - Concentration
 - Temperature
 - Surface Area
 - Catalyst
 - Inhibitor
- Activated Complex/Transition State
- Activation Energy
- Rate Laws
- Rate Constant
- Reaction Order
- Instantaneous reaction rate -
- Rate of a reaction over time (average)
- Complex Reaction
- Reaction Mechanism
- Elementary Step
- Intermediate
- Rate-Determining Step
- Potential Energy Diagram for complex reactions
 - Review enthalpy, activation energy
- Equilibrium
- Reversible reaction
- Equilibrium Expressions
- Equilibrium constant
- Le Chatelier's Principle
 - Concentration
 - Temperature
 - Pressure
 - Catalyst (no effect)
Test 8 Topics - Chapter 18, 19, 16

- Le Chatelier's Principle
 - Concentration
 - Temperature
 - Pressure
 - Catalyst (no effect)
- Keq expressions, finding Keq, finding concentrations when given Keq, Q vs. Keq
- Solubility Equilibria and K_{sp}
- Common ion effect
- Molar solubility
- Using K_{sp} to predict solubility and concentration of reactants or products
- Using K_{sp} to solve a common ion problem
- Using K_{sp} to determine if a precipitate will form (K_{sp} vs. Q_{sp})
- Arrhenius model of acids and bases
- Bronsted-Lowry model of acids and bases
- Acidic, basic, and neutral solutions
- Common reactions of acids
- Common reactions of bases
- Conjugate acid-base pairs
- Amphoteric
- Monoprotic and polyprotic
- Strength of acids and bases
- what makes something a stronger or weaker acid?
- How do acids form hydrogen ions in solution?
- K_a and K_b
- Equilibrium expressions for acids or bases
- K_w
- pH and pOH- acid rain/ ocean acidification
- pH calculations
- neutralization reaction
- acid-base titration
- equivalence point
- endpoint
- salt hydrolysis
- pH/pOH of a weak acid or base
- buffers

Test 9 Topics - Chapter 20, 21, 25

- Oxidation
- Reduction
- Redox reactions
- Oxidation numbers
- Oxidizing agent
- Reducing agent
- Half-reaction
- Balancing redox reactions
- Electrochemistry
- Voltaic cells
- Anode
- Cathode
- Salt bridge
- Reduction potentials
- Cell potential (E_{cell})- connect to potential energy **See Steve
- Battery
- Electric current/stoichiometry ***See Steve
- Electrolysis
- Electroplating
- Nuclear chemistry
- Chemical reactions versus nuclear reactions
- Radioisotope
- Types of radiation
- Strong force
- Electrostatic force
- Band of stability
- Beta decay
- Alpha decay
- Positron emission
- Electron capture
- Gamma emission
- Half-life
- Radiochemical dating
- Radioactive decay series
- Transmutation
- Induced transmutation
- Nuclear fusion
- Nuclear fission